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Chebyshev’s inequality,

µn

{
k ∈ [n] :

∣∣ ψ(k)−En[ψ]
loglogn

∣∣> δ
}
≤ Varn(ψ)
δ2(loglogn)2

=O
(

1
loglogn

)
.

From the asymptotics En[ψ]= loglogn+O(n− 3
4 ) we also get (for n large enough)

µn

{
k ∈ [n] :

∣∣ ψ(k)
loglogn

−1
∣∣> δ

}
≤ Varn(ψ)
δ2(loglogn)2

=O
(

1
loglogn

)
. ■

Exercise 2.18.
∑

p≤ 4%n

1
p ∼ loglogn

2.6. Weak law of large numbers

If a fair coin is tossed 100 times, we expect that the number of times it turns up
heads is close to 50. What do we mean by that, for after all the number of heads could
be any number between 0 and 100? What we mean of course, is that the number
of heads is unlikely to be far from 50. The weak law of large numbers expresses
precisely this.

Theorem 2.19 (Kolmogorov). Let X1, X2 . . . be i.i.d random variables. If E[|X1|] <
∞, then for any δ> 0, as n →∞, we have

P
( ∣∣ X1 + . . .+ Xn

n
−E[X1]

∣∣> δ
)
→ 0.

In language to be introduced later, we shall say that Sn/n converges to zero in proba-
bility and write Sn

n
P→E[X1]

PROOF. Step 1: First assume that Xi have finite variance σ2. Without loss of
generality take E[X1]= 0 (or else replace Xi by Xi−E[X1]. Then, µ=E[X1]. Then, by
the first moment method (Chebyshev’s inequality), P(|n−1Sn| > δ) ≤ n−2δ−2Var(Sn).
By the independence of Xis, we see that Var(Sn)= nσ2. Thus, P(|Sn

n | > δ)≤ σ2

nδ2 which
goes to zero as n →∞, for any fixed δ> 0.
Step 2: Now let Xi have finite expectation (which we assume is 0), but not neces-
sarily any higher moments. Fix n and write Xk = Yk + Zk, where Yk := Xk1|Xk |≤An
and Zk := Xk1|Xk |>An for some An to be chosen later. Then, Yi are i.i.d, with some
mean µn :=E[Y1]=−E[Z1] that depends on An and goes to zero as An → 0. We shall
choose An going to infinity, so that for large enough n, we do have |µn| < δ (for an
arbitrary fixed δ> 0).

|Y1|≤ An, hence Var(Y1) ≤ E[Y 2
1 ] ≤ AnE[|X1|]. By the Chebyshev bound that we

used in step 1,

(2.7) P
(
∣∣ SY

n
n

−µn
∣∣> δ

)

≤ Var(Y1)
nδ2 ≤ AnE[|X1|]

nδ2 .

Further, if n is large, then |µn| < δ and then

(2.8) P
(
∣∣ SZ

n
n

+µn
∣∣> δ

)

≤P
(
SZ

n )= 0
)
≤ nP(Z1 )= 0)= nP(|X1| > An).
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Thus, writing Xk = (Yk −µn)+ (Zk +µn), we see that

P
( ∣∣ Sn

n
∣∣> 2δ

)
≤ P

(
∣∣ SY

n
n

−µn
∣∣> δ

)

+P
(
∣∣ SZ

n
n

+µn
∣∣> δ

)

≤ AnE[|X1|]
nδ2 +nP(|X1| > An)

≤ AnE[|X1|]
nδ2 + n

An
E[|X1| 1|X1|>An ].

Now, we take An = αn with α := δ3E[|X1|]−1. The first term clearly becomes less
than δ. The second term is bounded by α−1E[|X1| 1|X1|>αn], which goes to zero as
n →∞ (for any fixed choise of α> 0). Thus, we see that

limsup
n→∞

P
( ∣∣ Sn

n
∣∣> 2δ

)
≤ δ

which gives the desired conclusion. ■

2.7. Applications of weak law of large numbers

We give three applications, two “practical” and one theoretical.

Application 1: Bernstein’s proof of Wierstrass’ approximation theorem.

Theorem 2.20. The set of polynomials is dense in the space of continuous functions
(with the sup-norm metric) on an interval of the line.

PROOF. (Bernstein) Let f ∈ C[0,1]. For any n ≥ 1, we define the Bernstein poly-
nomials Q f ,n(p) :=∑n

k=0 f
(

k
n

)(n
k
)
pk(1−p)n−k. We show that as n →∞, ‖Q f ,n− f ‖→ 0

which is clearly enough. To achieve this, we observe that Q f ,n(p) = E[ f (n−1Sn)],
where Sn has Binomial(n,p) distribution. Law of large numbers enters, because Bi-
nomial may be thought of as a sum of i.i.d Bernoullis.

For p ∈ [0,1], consider X1, X2, . . . i.i.d Ber(p) random variables. For any p ∈ [0,1],
we have
∣∣Ep

[
f
(

Sn

n

)]
− f (p)

∣∣ ≤ Ep

[∣∣ f
(

Sn

n

)
− f (p)

∣∣
]

= Ep

[∣∣ f
(

Sn

n

)
− f (p)

∣∣1| Sn
n −p|≤δ

]
+Ep

[∣∣ f
(

Sn

n

)
− f (p)

∣∣1| Sn
n −p|>δ

]

≤ ω f (δ)+2‖ f ‖Pp

( ∣∣ Sn

n
− p

∣∣> δ

)
(2.9)

where ‖ f ‖ is the sup-norm of f and ω f (δ) := sup|x−y|<δ | f (x)− f (y)| is the modulus of
continuity of f . Observe that Varp(X1)= p(1− p) to write

Pp

( ∣∣ Sn

n
− p

∣∣> δ

)
≤ p(1− p)

nδ2 ≤ 1
4δ2n

.

Plugging this into (2.9) and recalling that Q f ,n(p)=Ep

[
f
(

Sn
n

)]
, we get

sup
p∈[0,1]

∣∣Q f ,n(p)− f (p)
∣∣≤ω f (δ)+ ‖ f ‖

2δ2n

Since f is uniformly continuous (which is the same as saying that ω f (δ) ↓ 0 as
δ ↓ 0), given any ε > 0, we can take δ > 0 small enough that ω f (δ) < ε. With that
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choice of δ, we can choose n large enough so that the second term becomes smaller
than ε. With this choice of δ and n, we get ‖Q f ,n − f ‖< 2ε. ■

Remark 2.21. It is possible t write the proof without invoking WLLN. In fact, we did
not use WLLN, but the Chebyshev bound. The main point is that the Binomial(n,p)
probability measure puts almost all its mass between np(1−δ) and np(1+δ). Nev-
ertheless, WLLN makes it transparent why this is so.

Application 2: Monte Carlo method for evaluating integrals. Consider a con-
tinuous function f : [a,b]→R whose integral we would like to compute. Quite often,
the form of the function may be sufficiently complicated that we cannot analytically
compute it, but is explicit enough that we can numerically evaluate (on a computer)
f (x) for any specified x. Here is how one can evaluate the integral by use of random
numbers.

Suppose X1, X2, . . . are i.i.d uniform([a,b]). Then, Yk := f (Xk) are also i.i.d with
E[Y1]=

∫b
a f (x)dx. Therefore, by WLLN,

P
(
∣∣ 1

n

n∑

k=1
f (Xk) −

∫b

a
f (x)dx

∣∣> δ

)

→ 0.

Hence if we can sample uniform random numbers from [a,b], then we can evaluate
1
n

∑n
k=1 f (Xk), and present it as an approximate value of the desired integral!
In numerical analysis one uses the same idea, but with deterministic points.

The advantage of random samples is that it works irrespective of the niceness of
the function. The accuracy is not great, as the standard deviation of 1

n
∑n

k=1 f (Xk)
is Cn−1/2, so to decrease the error by half, one needs to sample four times as many
points.

Exercise 2.22. Since π=
∫1

0
4

1+x2 dx, by sampling uniform random numbers Xk and
evaluating 1

n
∑n

k=1
4

1+X2
k

we can estimate the value of π! Carry this out on the com-
puter to see how many samples you need to get the right value to three decimal
places.

Application 3: Accuracy in sample surveys Quite often we read about sample
surveys or polls, such as “do you support the war in Iraq?”. The poll may be con-
ducted across continents, and one is sometimes dismayed to see that the pollsters
asked a 1000 people in France and about 1800 people in India (a much much larger
population). Should the sample sizes have been proportional to the size of the popu-
lation?

Behind the survey is the simple hypothesis that each person is a Bernoulli ran-
dom variable (1=‘yes’, 0=‘no’), and that there is a probability pi (or pf ) for an Indian
(or a French person) to have the opinion yes. Are different peoples’ opinions indepen-
dent? Definitely not, but let us make that hypothesis. Then, if we sample n people,
we estimate p by Xn where Xi are i.i.d Ber(p). The accuracy of the estimate is mea-

sured by its mean-squared deviation
√

Var(Xn)=
√

p(1− p)n− 1
2 . Note that this does

not depend on the population size, which means that the estimate is about as accu-
rate in India as in France, with the same sample size! This is all correct, provided
that the sample size is much smaller than the total population. Even if not satisfied
with the assumption of independence, you must concede that the vague feeling of
unease about relative sample sizes has no basis in fact...


